| OVERALL ENVELO | PE TDV ENERGY | Y AI | PROAC | H | (Pa | age 1 of 6) | ENV-3C | |---|-------------------------------------|-----------------|-----------------|------------------------|-----------------|-----------------------|-------------------------| | Project Name: | | | | | Date: | | Climate Zone: | | | | | | | | | | | WINDOW RATIO CALCULA | ATION §143(b) | | | | | | | | A. TOTAL LINEAR DISPLAY
PERIMETER | | FT | \times 6 FT = | | ft ² | DISPLAY | AREA | | B. TOTAL GROSS EXTERIOR AREA | RWALL | ft ² | × 0.40 = | | ft ² | 40% of GR
WALL AR | ROSS EXTERIOR
REA | | C. ENTER LARGER OF (A or E | 3) | | | | ft ² | MAXIMU
AREA | M STANDARD | | D. ENTER PROPOSED WINDO | OW AREA | | | | ft^2 | PROPOSE | D AREA | | If the Proposed Window Area is | greater than the Maximum | Stand | ard Area, the | n go to Windo | w Adjust | tment step b | elow. | | E. WINDOW WALL RATIO = (| (Row D) Divided by (Row | B) = | | Must meet R | SHG in | Table 143-A | , 143-B, or 143-C | | WEST WINDOW RATIO CALO | CULATION | | | | | | | | F. WEST LINEAR DISPLAY
PERIMETER | | FT | × 6 FT = | | ft ² | WEST DI | SPLAY AREA | | G. WEST EXTERIOR WALL A | REA | ft ² | × 0.40 = | | ft ² | 40% of WI
WALL AR | EST EXTERIOR
REA | | H. ENTER LARGER OF (F or C | i) | | | | ft ² | MAXIMU
WEST AR | M STANDARD
EA | | I. ENTER PROPOSED WEST W | VINDOW AREA | | | | ft ² | PROPOSE
WINDOW | | | If the Proposed West Window A | rea is greater than the Maxi | mum | Standard Wes | st Area, then C | o to Wi | ndow Adjust | ment step below. | | J. WINDOW WALL RATIO = (| (Row I) Divided by (Row C | G) = | | Must meet R | SHG in | Table 143-A | , 143-B, or 143-C | | Combined Area for North, East | and South Walls | | | | | | | | K. N/E/S DISPLAY PERIMETI
(A Minus F) | ER | FT | × 6 FT = | | ft^2 | N/E/S of W
WALL AR | VEST EXTERIOR
REA | | L. N/E/S EXTERIOR WALL A (B Minus G) | AREA | ft ² | × 0.40 = | | ft^2 | 40% N/E/S | SAREA | | M. ENTER LARGER OF K or L | | | | | ft ² | MAXIMU
N/E/S/ AR | MN STANDARD
EA | | N. PROPOSED N/E/S/ WINDO | W AREA (D Minus I) | | | | ft ² | PROPOSE | D N/E/S/ AREA | | Window Adjustment | | | | | | | | | O. IF D>C and/or if I>H, Proceed ENV-3C Page 6, CALCULATE ADJ | | or all | walls or Step | 2 for West wa | ll. If not, | go to the Sky | light Area Test on | | 1. IF D>C: Use the calculated Win | • | AF) fo | | POCED | | *** | DIROW | | | MAX. STANDARD AREA
(from C) | | | POSED
AREA (from D) | | | INDOW
IENT FACTOR | | | | ÷ | | | = _ | | | | 2. IF I>H: Calculate one Window | Adjustment Factor (WAF) fo | or the | West wall. | | | | | | _ | MAX. STANDARD WEST
AREA (from H) | | | SED WEST
A (from I) | | | C WINDOW
IENT FACTOR | | | | ÷ | | | = _ | | | | _ | MAX. STANDARD
AREA (from C) | | | POSED
(from D) | | | C WINDOW
IENT FACTOR | | | | ÷ | | | = | | | | OVERALL ENVELOPE TDV | (Page 2 | 2 of 6) | ENV-3C | | | | | | | |--|------------------------------|--------------------------|-----------------|---|--------------------|--|--|--|--| | Project Name: | | | Date: | (| Climate Zone: | SKYLIGHT RATIO CALCULATION §14. | | | | | (ED 0741)D4BB | | | | | | | ACTUAL
GROSS ROOF AREA | | | MAXIMUM ALLOWED STANDARD
SKYLIGHT AREA | | | | | | | A IF Atrium/Skylight Height is ≤ 55 ft; or | | $ft2 \times 0.05 =$ | | ft^2 | | | | | | | B. IF Atrium/Skylight Height is > 55 ft | | $ft^2 \times 0.10 =$ | | ft^2 | | | | | | | C. Proposed Skylight Area | | | ft ² | | | | | | | | D. Skylight Ratio = Proposed Skylight Area | (Row C) <u>Divided</u> by Ac | ctual Gross Roof Are | a = | % | SRR_{Prop} | | | | | | E. Maximum Allowed Skylight Roof Ratio = (Row A or B) Divided by Total Gross Exterior | | andard Skylight Area | | % | SRR _{STD} | | | | | | IF THE PROPOSED SKYLIGHT AREA IS GE
CALCULATION FOR THE SKYLIGHT AREA | | | | ED TO | THE NEXT | | | | | | SKYLIGHT AREA ADJUSTMENT | | | | | | | | | | | IF F>D, Proceed To Calculation Step 1 | | | | | | | | | | | Step 1. Calculated the Skylight Adjustment Factor (SAF). | | | | | | | | | | | STANDARD
SKYLIGHT AREA | PROPOSED
AREA (IF E = | SKYLIGHT
= 0 ENTER 1) | | SKYLIGH
IENT FAO | IT
CTOR (SAF) | | | | | | | <u></u> | = | | | | | | | | | CARRY THE WINDOW ADJUSTMENT FACTOR (SAF) TO PAGE 6 OF 6 TO CALCULATE THE ADJUSTED AREA | | | | | | | | | | | OVERALL EN | VELOPE | TDV E | NERGY . | APPRO | ACH | | | | | | (Page | 3 of 6) | ENV-3C | |--|-------------|--|---|-----------------------------|---------------------|-----------------------|-------------------|-----------------|-----------------------------|---------------------------------|------------------------|-----------|---------------------------------| | Project Name: | | | | | | | | | | Date: | | Climate 2 | Zone: | | TDV for the Stan | dard Design | Building | , See Referei | nce Nonres | idential App | endix NA5 | .2 | | | | | | | | Occupancy Type and Coefficients Tables | | | | | | | | | | | | | | | A | В | C | D | E | F | G | Н | I | J | K | L | | M | | | | Number | 5 0 | | | | Criteria | | Co
U-factor ⁷ | efficients
SHGC ⁷ | for
VT ⁷ | | | | Assembly Type ¹ | Orientation | Of Like
Assembly
Type ⁴ | Roofs or
Floor Mass
Type ⁵ | Exterior
Surface
Area | Fenetration
Type | U-factor ⁶ | SHGC ⁷ | VT ⁸ | $Cs_{u,i}$ | $Cs_{s,i}$ | $Cs_{t,i}$ | | dard TDV
Energy ⁸ | • | • | l l | | 1 | u l | | Su | m of Tota | ıl Standar | d Design | | | 1. Indicate type of assembly for the Envelope (e.g. Wall, Floor, Roof, Window, Skylight & Door). One assembly type for each row. - 3. Enter the type of fenestration; M=Manufactured, SB=Site-built, SK= Skylight and F=Fabricated. - 4. Grouping of like assemblies in the same orientation is allowed. Iindicate the number in column E. - 5. Enter Roofs, Floors, Walls, and for Mass Walls the catergoies are light mass(HC<7), medium mass (7<=HC,15), and heavy mass (HC>=15). - 6.Standard Design U-factor are from Table 143-A, B or C. - 7. Standard Design SHGC are from Table 143-A, B or C. Enter "0" if not applicable. Note: Not all vertical windows have an overhang then assume SHGC as value entered. - 8. To calculate the fenestration standard design VT in Column H. Multiply Column G by 1.2. - 9. Coefficients for; U-factor (Cs_{u,i}), SHGC (Cs_{s,i}), and VT(Cs_{t,I}, can be found in Table NA5.2, through Table NA5.5 of the Reference Nonresidential Appendices NA5. The Coefficient for SHGC and VT are only enter - for the **fenestration products**. Enter "0" when not applicable. - 10. Calculate the TDV Standard Design for for each Envelope Assembly Type: $TDV_{Std} = Column\ C\ x\ [Column\ E\ x\ ((U-factor_{Si}\ x\ C_{Sui}) + (SHGC_{Si}\ x\ C_{Ssi}) + (VT_{Si}\ x\ C_{Sti}))]$ for each Assembly Type. See Nonresidential Manual Examples in Section 3.7.1 for details. ^{2.} Enter the area of each different assembly. | OVERALL ENVE | LOPE T | DV EN | ERGY. | APPR | OACH | | | | | | (P | age 4 of 6) | ENV-3C | |--|-------------------------------------|--------------------------------|------------------------------|--------------------------|-----------------------|-------------------|--------|------------------------|-------------------|-----------------|-------------|------------------------|----------------------| | Project Name: | | | | | | | | | | | Date: | | Climate Zone: | | TDV for the Proposed Design Building, See Reference Nonresidential Apendix NA5.3 | | | | | | | | | | | | | | | Occupancy Type and Coefficients Tables | | | | | | | | | .5-5 | | | | | | A | В | С | D | E | F | G | Н | I | J | K | L | M | N | | | | Number | Total | | | | | | Co | efficie | nts for | | Proposed TDV | | | | Of Like | | Fenestrat | | Criteria | | U- factor ⁸ | SHGC ⁸ | VT ⁸ | Cool Roof 9 | Overhang ¹⁰ | Energy ¹¹ | | Assembly Type ¹ | Orientation ² | Assembly
Type ^{2A} | Surface
Area ³ | ion
Type ⁴ | U-factor ⁵ | SHGC ⁶ | VT^7 | $C_{su,i}$ | $C_{Ss,i}$ | $C_{t,i}$ | M_{CR} | M_{OH} | Total Proposed Design ¹² | | | | | | | | | | | | | | $Proposed \leq Standard$ | | | | | | | | | | | | | | - 1. Indicate type of assembly for the Envelope (e.g. Wall, Floor, Roof, Window, Skylight & Door). One assembly type for each row. - 2. Indicate the orientation for walls, doors & windows. 2A. Note: Grouping of like assemblies in the same orientation is allowed. Enter the number in column C. - 3. Indicate the Exterior Surface Area of the Assembly for that one assembly or if like assemblies then the total surface area of all assemblies in the same orientation. - 4. Enter the type of fenestration; M=Manufactured, SB=Site-built, SK= Skylight and F=Fabricated. - 5. Standard Design U-factor are from Table 143-A, B or C for the appropriate assembly type. - 6. Standard Design SHGC are from Table 143-A, B or C. Enter "0" if not applicable. Note: Not all vertical windows have an overhang then assume SHGC as value entered. - 7. To calculate the fenestration standard design VT in Column H. Multiply Column G by 1.2. - 8. Coefficients for; U-factor ($Cs_{u,i}$), SHGC ($Cs_{s,i}$), and VT($Cs_{t,I}$, can be found in Table NA5.2, through Table NA5.5 of the Reference Nonresidential Appendices NA5. The Coefficient for SHGC and VT are only entered for the **fenestration products**. Enter "0" when not applicable. - 9. Calculate the Cool Roof, M_{CR}, first by using the next page (Page 5 of 6). Enter the value in the Proposed Column L. - 10. Calculate the Overhang M_{OH} on the next page (Page 5 of 6). Enter the value in the Proposed Column M. - 11. The Proposed TDV energy use for all assemblies other than roofs must be equal to or less than Standard TDV in Page 3 of 6. Therfore; $TDV_P = Column \ D \ x \ [(U factor \ x \ CSu) + (CRui \ x \ URi \ x \ MCRi) + (SHGCP \ x \ CSsi \ x \ MOH) + (VTP \ x \ CSt)]$ Enter the calculated value in Column N. - 12. Sum up all the Proposed TDV Energy in Column N and enter value in the cell. Similarly enter the sum of all Standard TDV Energy and compare. Proposed must be ≤ to the Standard. | OVERAL: | L ENVE | LOPE TD' | V ENERG | SY APP | <u>ROACH</u> | (Pag | ge 5 of 6) | ENV-3C | |---|-------------------|---------------------------------------|--|---|----------------------------------|--|-------------------------|---------------------| | Cool Roof M | Tultiplier (| Mcr) | | | | | | | | PROJECT NAME | | · · · · · · · · · · · · · · · · · · · | | | | DATE | | | | Occupancy Type | and [| ☐ Nonresidential | , 🗆 24-Но | our Hee | ☐ Retail. | | Climate Zo | ne: | | Coefficients Tabl | | See Table NA5-3 | , | le NA5-4 | See Table 1 | NA5-5 | Cilillate 20 | nc. | | | | Coefficien | ts of | | | Calculation | | | | A | В | С | D | Е | F | G | | | | Reflectance | Emittance | Proposed Aged
Solar
Reflectance | Standard
Aged Solar
Reflectance ¹ | Proposed
Thermal
Emittance | Standard
Thermal
Emittance | Cool Roof
Multiplier ² | | | | C_{Ref} | C_{Emit} | $ ho_{aged\ prop}$ | $\rho_{aged\ std}$ | $\epsilon_{ m prop}$ | ϵ_{std} | $M_{CR,I}$ | D . 1011 | | | | | | | | | | Enter multip. Column L. | lier in Page 4 of 6 | | Excerpt from Table
Where:
Standard design va
Thermal Emittance | lues for Solar Re | flectance and | | Standard
Aged Solar
Reflectance
(Column D) | | Standard
Thermal
Emittance
(Column F) | | | | Low-Rise, Low-Slo | oped, CZ2 throug | gh CZ15 | | 0. | 55 | 0.75 | | | | Low-Rise, Low-Slo | oped, CZ1 and C | Z16 | | 0. | 10 | 0.75 | | | | High-Rise, Low-Sl | oped, CZ10 thro | ugh CZ15 | | 0. | 55 | 0.75 | | | | High-Rise, Low-Sl | CZ16 | | 0. | 10 | 0.75 | | | | | Steep-Sloped, CZ2 | | | 0. | 25 | 0.75 | | | | | Steep-Sloped, all or | ther | | | 0. | 10 | 0.75 | | | | Directory. Enter | results of the | Cool Roof Multip | lier equation in | footnote 2. | | (Col C - Col D) + C | | | | Overhang Multiplier (Мон) | | | | | | | | | | |--|--|--|--|-------------------------------|-----------------------------------|-------------------------------------|--|--|--| | Occupancy Type and Coefficients Tables | ☐ Nonresidential,
See Table NA5-3 | | ☐ 24-Hour Use,
See Table NA5-4 | | ☐ Retail,
See Table N. | A5-5 | Climate Zone: | | | | | Coeffic | ients of | Fenestration Ove | | rhang | Calculation | | | | | A | В | C | D | Е | F | G | | | | | Overhang
Orientation | 1st
Projection
Factor ¹ | 2nd
Projection
Factor ¹ | Horizontal
Projection
(ft ²) | Vertical
Distance
(ft²) | Projection
Factor ² | Overhang
Multiplier ³ | | | | | | a_{i} | b_i | Н | V | PF | $M_{ m OH,I}$ | - | | | | | | | | | | | - | | | | | | | | | | | Enter multiplier in Page 4 of 6
Column M. | | | ^{1.} Where: a_i and b_i are the coefficients for the overhang projection factor (see tables) and is climate zone dependent. ^{2.} PF= H/V (Horizontal (H) projection of the overhang from the surface of the window in feet, but no greater than V and the Vertical (V) distance from the window sill to the bottom of the overhang, in feet.) Enter results in Column F. 3. $M_{OH,I} = 1 + (a_i x PF_i) + b_i x PF_i^2$. Enter results in Column G. | OVERALL ENVE | LOPE TDV EN | (Page | 6 of 6) | ENV-3C | | | | |------------------------------------|----------------------|---------------|--------------|------------------------|------------------------------|---------------|-----------------------| | PROJECT NAME | | | | | Γ | DATE | | | WINDOW AREA ARWING | | TONG | | | | | | | WINDOW AREA ADJUST | IMENT CALCULAT | TONS | | | | | | | | | | 6 | | | | | | A | | В | C | D | E
WINDOW | F
ADJUSTE | G D ADJUSTED | | | _ | | | | ADJUSTMENT | WINDOW | WALL | | WALL NAME
(e.g. Wall-1, Wall-2) | ORIENTATION N E S W | GROSS
AREA | DOOR
AREA | WINDOW
AREA | FACTOR
(From Page 1 of 6) | AREA
(D×E) | AREA
B-(F+C) | | (c.g. Wall 1, Wall 2) | | | | THE | (1 foil 1 age 101 0) | (D/E) | B (1+C) | = $=$ $=$ $=$ | = $=$ $=$ $=$ | mom. r | <u> </u> | | <u> </u> | İ | | | | | TOTALS: | | | | | | | | SKYLIGHT AREA ADJUS | | | | | | | | | A | В | C | *** | D | E | | F | | ROOF NAME | GROSS | SKYLIGH | ir | SKYLIGHT
ADJUSTMEN | ADJUS'
T SKYLIGHT | ΓED
ΓAREA | ADJUSTED
ROOF AREA | | (e.g. Roof-1, Roof-2) | AREA | AREA | | FACTOR (From Page 2 of | | | (B - E) | | (c.g. R001-1, R001-2) | AREA | AREA | | (Fiolii i age 2 oi | 0) (CXL | " | (B - E) | | | | | | | | | | | | 1 | TOTALS | h: | | | | | | |